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Ficure 17.29. The average integrated neuronal activity in response to CS + (dark bars) and CS— (light
bars) are plotted in 40 consecutive 10 msec intervals after CS onset, for the CA1 subfield of the dorsal
hippocampus. Data obtained during sessions of standard acquisition in well-trained rabbits, extinction
with an unexpected stimulus, and standard extinction (SE) are shown, respectively, in the three panels
in each row. The upper panels show data of the novel context extinction session and related control
sessions, whereas the lower row shows data from the novel tone (NT) session and related control
sessions. Upper panel data are normalized relative to the pre-CS baseline, and CS onset is indicated at
the leftmost abscissa position. Lower panels show average “raw” scores, including the pre-tone
baseline. CS onset in these panels is shown by dashed lines. These results indicate that the onset of
novel and standard extinction greatly diminished the discharges of CA1 neurons. In addition, the novel
context condition (but not the NT condition) induced a pronounced inhibitory or “off”-type discharge
of the CA1 cells in response to the CS.
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trained rabbit is placed into the conditioning
apparatus. The background contextual
stimuli of the experimental environment ac-

is summarized and updated to incorporate
the new findings described in this chapter
(see Fig. 17.31). The model specifies the

distinct functions and associated neural cir-
cuitry that operate during discrimination
learning and performance. Two funda-
mental neural computations identified by the
model are motor priming, the principal func-
tion of striatal motor areas, and event pro-
cessing, the principal function of limbic
cortex and thalamus.

Motor Priming

It is proposed that the learned response of
locomotion is primed or made ready when a

quire the capacity to elicit the priming of
locomotion during the course of condition-
ing. By this view the priming of locomotion
is a neural preparatory response conditioned
to the background stimuli. The idea that
background stimuli in conditioning environ-
ments importantly modulate conditioned be-
havior has been well established since the
time of Pavlov and has received substantial
attention (see volume edited by Balsam and
Tomie, 1985). In addition to the priming of
the learned behavior, the motor priming
system provides the neural signals to lower
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Ficure 17.30. Average integrated unit discharges
elicited by CS+ and CS- in trained rabbits
during the pretraining session (PTS), first expo-
sure session (FE), first significant behavioral dis-
crimination (FS), and criterial behavioral discrim-
ination learning (Crit) in three subfields of the
dorsal hippocampus. Each bar represents the
average discharge magnitude in the form of stan-
dard scores normalized with respect to the pre-CS
baseline for 400 msec following CS onset. These
results show that hippocampal areas exhibit dra-
matic increases in the first conditioning session,
relative to the discharges in the preceding PTS
with tone and unpaired shock presentation.

brainstem structures that initiate the loco-
motory respons¢. This response initiation
function is signified by the uppermost large
arrow in Figure 17.31.

Event Processing

The background stimuli prime locomotion,
but they do not determine the precise moment
of its elicitation. That moment is determined
by the activity of the limbic event processing
system activity. The premotor activities of
cingulate cortical neurons projected to the
striatum represent command volleys that trig-
ger the output of the already primed response
(see pathway 7, Fig. 17.31). The command
volleys represent the end products of limbic
system event processing. They are regarded
not as hard-wired, prelocomotory volleys
but rather as products of neural learning
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processes (i.e., neuronal plasticity). Thus a
principal brain modification underlying dis-
criminative avoidance learning is the “con-
struction” of cingulate cortical command vol-
leys and the plasticity that makes these volleys
contingent on the external presence of the
learning context and the CS+.

The timing of the cingulate cortical com-
mand volleys is responsible for the coordi-
nation of response output with key events
such as the CS+ and the shock US. Sites in
which cingulate cortical efferent projections
of command volleys could be involved in ini-
tiating conditioned locomotion include the
striatum, motor cortex, zona incerta, and
deep layers of the superior colliculus (Vogt,
19835; Groenewegen et al., 1990; Alexander et
al., 1990).

The operation of the event-processing
system begins outside of the limbic system,
with the formation of discriminative TIA
in structures of the auditory projection
pathway (the medial and dorsal divisions of
the medial geniculate nucleus). The neurons
in these nuclei act as a peripheral adaptive
filter that classifies auditory afferents as
engendered by either associatively significant
or nonsignificant external events. The af-
ferent flow of information through the me-
dial geniculate complex responsible for dis-
criminative TIA is indicated by the large
arrow and the box labeled “Sensory Input”
in the lower right of Figure 17.31.

The pathway whereby discriminative TIA
flows from the sensory filtering nuclei of the
medial geniculate complex to the limbic tha-
lamic nuclei has not been established. Pos-
sible intermediary relays are listed in the box
labeled “Sensory Input” in Figure 17.31.
Findings discussed in “Subcortical Origins of
Limbic Thalamic Discriminative Training-
Induced Neuronal Activity” indicate that
relays in and/or in the vicinity of the amyg-
daloid nuclei provide an important interme-
diary. It is proposed that the amygdaloid
projections to the cholinergic dorsal teg-
mentum (laterodorsal and pedunculopon-
tine tegmental nuclei in Fig. 17.31) is the
principal trajectory of input to the limbic
thalamus, as indicated in the lower left of
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Ficure 17.31. Theoretical model of the neural circuitry and information flow underlying discriminative
avoidance learning. The wide lines indicate major information flows involved in triggering CR output,
and thin lines represent modulatory influences that are involved in the development of training-induced
excitation (TIA,) and training-induced discrimination (TIA,). Information enters the system through
sensory pathways, and synaptic plasticity subserving TIA, is elaborated in the medial geniculate nucleus.
CS-elicited activity progresses via connection 1 to the anterior and MD thalamic nuclei via possible
synaptic relays in the reticular thalamic nucleus, medial pretectum, or amygdaloid complex. Anterior
cingulate, MD, and basolateral amygdaloid circuitry participate in mnemonic recency functions,
whereas posterior cingulate cortex, anterior thalamic, and hippocampal formation circuitry participate
in mnemonic primacy functions.

In the anterior thalamus the discriminative discharges undergo modulation as a result of inputs from
brainstem cholinergic cell groups (connection 6), hippocampal formation (connection 3c), cingulate
cortex (connections 4a and b), and mamillary nuclei (connection 5). The modulation brings about TIA,
as well as separate training-stage-related peaks of TIA, in distinct anterior thalamic nuclei. The peaks
produce a cue-driven topographic pattern of excitation projected via connection 2 to separate layers of
cingulate cortex. The topographic pattern is proposed to represent the neuronal coding of the spatio-
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Figure 17.31 (pathway 1). As documented in
“Distinctive Functions of the Anterior and
Posterior Circuits,” the anterior circuit (an-
terior cingulate cortex and MD thalamus) and
posterior circuit (posterior cingulate cortex
and anterior thalamus) subserve mnemonic
recency and primacy functions, respectively.

Input to the thalamic components of these
two circuits from the cholinergic tegmentum
produces excitatory TIA (i.e., the increased
thalamic cell discharges in trained rabbits
compared with discharges during noncon-
tingent pretraining). In addition, inputs
from the hippocampal formation via cingu-
late cortex (pathways 3a, 3b, 4a, and 4b) and
via the mamillary nuclei (pathways 3d and 5)
converge with the tegmental inputs in ante-
rior thalamus to construct the topographi-
cally distinct training-stage-related peaks of
excitatory TIA in the various anterior tha-
lamic nuclei and layers of the posterior
cingulate cortex. It is proposed that the
peaks of TIA considered collectively repre-
sents the mnemonic primacy code. The to-
pography of the pattern changes during be-
havioral acquisition, however, a particular
pattern at a given stage of training specifies
that the CS+ has been presented in the
training environment. This pattern thus con-
stitutes a retrieval pattern in that it signifies
that conditions are appropriate for the per-
formance of an avoidance response. As a
primacy system neuronal code, the pattern is
very stable, thus providing an “historical”
mnemonic template for the detection of
change. The specificity of the retrieval pat-
terns to the particular spatiotemporal con-
text that defines the learning situation per-
mits the rabbits to detect changes in the
learning context and to perform concur-
rently several discriminative problems with
minimal interference.

If input patterns match the primacy circuit
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retrieval pattern, cells in cingulate cortex
that project to the striatal structures of the
motor priming system produce a command
volley that calls forth the learned response.
If a match does not occur hippocampal
efferents suppress performance and activate
recency encoding processes in anterior cingu-
late cortex.

The topographic retrieval patterns are a
product of hippocampal modulation of
limbic thalamus and cingulate cortex. The
patterns thus account for properties of the
mammalian memory system that have been
regarded in other theories as uniquely hippo-
campal. Hippocampal damage deletes the
topographic patterns and the “hippocampal”
mnemonic properties, leaving intact nonto-
pographic excitatory TIA, which is adequate
for the mediation of basic acquisition of the
avoidance behavior. Thus, mnemonic func-
tions, which are preserved in animals with
hippocampal lesions (such as instrumental
avoidance learning), are products of basic
cingulate cortical and limbic diencephalic
encoding processes devoid of the hippo-
campal topographic patterns. This concep-
tion is thus at odds with other theories that
contend that basic classical and instrumental
learning are provinces of a “habit” system or
a “procedural” learning system, proposed to
exist entirely outside of the limbic domain.
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temporal learning context essential for CR retrieval. If the retrieval pattern is elicited by the CS+ in
a trained rabbit, command volleys of pre-CR cingulate cortical neuronal activity relayed to striatal
motor structures via connection 7 trigger output of the learned behavior. Anterodorsal, AD;
parvocellular division of anteroventral, AVp; magnocellular division of anteroventral, AVm; antero-
medial, AM; laterodorsal tegmental nucleus, LDTN; pedunculopontine tegmental nucleus, PPTN.
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